Savitribai Public University Big Data MCQ | SPPU Big Data MCQ | Big Data

 Big Data 


1. Who popularized Big Data term?

                a) John Deere                    b) John Mashed

                C) Johnny Masha              d) John Mash

Answer: b) John Mashed

 

2. Numbers, text, image, audio, and video data is

                a) Volume           b) value

                c) Verity               d) Variety

Answer : d) Variety

 

3. Real time data is

                a) fields                b) primary key

                c) unique             d) record

Answer : c) unique

 

4. ……….. is a term that is used to describe data that is high volume, high velocity, and/ or high variety.

                a) Analytics                      b) Big Data

                c) Hadoop data                 d) Big data analytics

Answer : b) Big Data

 

5. ………. Digital data is based on Relational database table.

                a) Structured                   b) Unstructured

                c) Semi-structured          d) Semi- Unstructured

Answer : a) Structured

 

6. …….. digital data is based on XML/RDF.

                a) Structured                     b) Unstructured

                c) Semi-structured           d) Semi- Unstructured

Answer : b) Unstructured

 

7. ……. Digital data is based on character and binary data.

                a) Structured                   b) Unstructured

                c) Semi-structured          d) Semi- Unstructured

Answer : c) Semi-structured

 

8. …….. is not processing source of Big Data.

                a) R                                  b) Yahoo! Pipes,

                c) Mechanical Turk          d) Data meter

Answer: d) Data meter

 

9. ……. Is concerned with extraction of actionable knowledge and insights from big data.

                a) Data analytics               b) Big Data

                c) Digital data                   d) Descriptive Analytics

Answer : a) data analytics

 

10. ……. Essentially tells what happened in the past and presents it in an easily understandable form.

                a) Data analytics               b) Big Data

                c) Digital data                   d) Descriptive Analytics

Answer : d) Descriptive Analytics

 

11. ……….. extrapolates from available data and tells what is expected to happen in the near future.

                a) Predictive Analytics    b) Big data

                c) Digital data                  d) Descriptive Analytics

Answer : a) Predictive Analytics

 

12. ………. Finds unexpected relationships among parameters is collections of big data.

                a) exploratory or discovery Analytics       b) Predictive Analytics

                c) Digital data                                           d) Descriptive Analytics

Answer :  a) exploratory or discovery Analytics

 

13. ……….. useful knowledge from data to solve business problems can be treated systematically by following a process with reasonably well-defined stages.

a) Extracting       b) Preparing

c) Prescribing     d) None

Answer : a) Extracting

 

14. ………. Answers the question “What has happed?”

                a) Descriptive analytics                  b) predictive analytics

                c) Prescriptive analytics                 d) None

Answer : a) Descriptive analytics.

 

15. ………….. answer the question “What will happen?”

                a) Descriptive analytics                  b) predictive analytics

                c) Prescriptive analytics                 d) None

Answer : b) predictive analytics

 

16. ………….. answer the question “How can we make it happen?”

                a) Descriptive analytics                  b) predictive analytics

                c) Prescriptive analytics                 d) None

Answer : c) Prescriptive analytics

 

17. ……  is most important language for Data Science.

                a) Java                  b) Ruby

                c) R                       d) None of the mentioned.

Answer : c) R

 

18. ……… phase of the data analytics lifecycle usually takes  the longest time.

                a) Phase 2 : Data preparation      b) Phase 3 : Model Planning

                c) Phase 4 : Model Building       d) Phase 5 : communicate Results

Answer : a) Phase 2 : Data preparation

 

19. When data are collected in a statistical study for only a portion or subset of all elements of interest we are using.

                a) Sample            b) Parameter

                c) Population      d) None

Answer : a) Sample

 

20. In Statistics, a population consists of

                a) All People living in a country.

                b) All people living in the city are under study.

                c) All subjects or objects whose characteristics are being studied.

                d) None of the above

Answer : c) All subjects or objects whose characteristics are being studied.

 

21. The strength (degree) of the correlation between a set of independent variables X and a dependent variable Y is measure by

                a) Coefficient of Correlation        b) Coefficient of Determination

                c) Standard error of estimate        d) All of the above.

Answer : a) Coefficient of Correlation

 

22. Correlation coefficient values lies between

                a) -1 and +1        b) 0 and 1

                c) -1 and 0           d) None of these

Answer : a) -1 and +1

 

23. In correlation, both variables are always

                a) Random          b) Non Random

                c) Same               d) None

Answer : a) Random

 

24. If two variables oppose each other then the correlation will be

                a) Positive Correlation   b) Zero Correlation

                c) Perfect Correlation     d) Negative Correlation

Answer : d) Negative Correlation.

 

25. A perfect negative correlation is signified by

                a) 0         b) 1

                c) 0.5     d) -1

Answer: d) -1

 

26. If X and Y are independent to each other, the coefficient of correlation

                a) -1       b) 0

                c) +1      d) None

Answer : a) -1

 

27. If the scatter diagram is drawn the scatter pints lie on a straight line then it indicate

                a) Regression                     b) Skewness

                c) No correlation              d) Perfect correction

Answer : c) No correlation

 

28. …………. Is the major assumption in a linear regression model.

                a) The independent variables are numeric variables.

                b) There is only one dependent variable.

                c) The relationship between the independent and dependent variables is linear.

                d) The error term is a normally distributed random variable with mean zero and constant variance.

Answer : c) The relationship between the independent and dependent variables is linear.

 

29. ……… input (independent) variables are in used a simple linear regression model.

                a) 1         b) 2

                c) 3         d) depends on the number of features/attributes involved Bottom of Form.

Answer: a) 1

 

30. …….. of the following is not a step in data analysis.

a) Obtain the data           b) Clean the data

c) EDA                            d) None of the mentioned

Answer : d) None of the mentioned

 

31. Regression analysis ………

                a) Establishes a relationship between two variables.       B) Establishes cause and effect.

                c) Measures growth.                                                         D) Measures the demand for a good.

Answer: a) Establishes a relationship between two variables.

 

32. The dependent variable is also called…..

                a) Regression                  b) Regress and

                c) Continuous variable   d) Independent

Answer: b) Regress and

 

33. The independent variable is also called…………

a) Regressor                     b) Predict and variable

c) Explained Variable      d) All of these

Answer : a) Regressor

 

34.  ………… is about developing code to enable the machine to learn to perform tasks and its basic principle is the automatic modeling of underlying processes that have generated the collected data.
                a) Data Science                  b) Machine learning (ML)

                c) Data analytics                d) All of the Mentioned

Answer : b) Machine learning (ML)

 

35. Groups of related observations are called …………….. and the procedure to organize items of a given collection into groups base on some similar features called as………………

                a) clusters, analysis                         b) regression, clustering

                c) cluster, clustering                        d) None of the Mentioned

Answer : c) cluster, clustering

 

36. ……… rule mining is a technique to identify underlying relations between different items.

                a) Association     b) analytics

                c) Learning          d) All of the Mentioned.

Answer : a) Association

 

37. ………… is a form of supervised learning. Mail service provider like Gmail, Yahoo and other use this technique to classify a new mail as spam or not spam.

                a) Machine Learning       b) Classification

                c) Regression                     d) All of the mentioned

Answer : b) Classification

 

38. Examples of supervised learning includes………….

                a) Regression                     b) Decision Tree

                c) KNN                              d) All of the Mentioned

Answer: d) All of the Mentioned

 

39. A Naive Bayes Classifier is a  ……….. machine learning algorithm which relies on the assumption of feature independent to classify input data.

a) supervised                     b) Unsupervised

c) semi-supervised            d) All of the Mentioned

Answer : a) supervised

 

40.  …………….. analysis has become one of the most widely used statistical tools for analyzing multifactor data and it is appealing because it provides a conceptually simple method for investigating functional relationships among variables.

                a) Clustering                       b) Regression

                c) Data                                d) All of the Mentioned

Answer : b) Regression

Savitribai Public University Big Data MCQ | SPPU Big Data MCQ | Big Data Savitribai Public University Big Data  MCQ | SPPU Big Data MCQ | Big Data Reviewed by technical_saurabh on December 31, 2020 Rating: 5

No comments:

Powered by Blogger.